- 23 Tháng sáu 2018
- 4,076
- 12,759
- 951
- Nam Định
- THPT chuyên Lê Hồng Phong
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Cho [tex]a,b,c>0[/tex]
Chứng minh rằng :
[tex]P=\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ac}}\geq \frac{a+b+c}{5}[/tex]
Chứng minh rằng :
[tex]P=\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ac}}\geq \frac{a+b+c}{5}[/tex]