BĐT [tex]\Leftrightarrow \sum \frac{1}{a^4(b+1)(c+1)} \geq \frac{3}{4}[/tex]
Đặt [tex](\frac{1}{a};\frac{1}{b};\frac{1}{c}) \rightarrow (x;y;z)[/tex], [tex]\Rightarrow xyz=\frac{1}{abc}=1[/tex]
BĐT [tex]\Leftrightarrow \sum \frac{x^4}{(\frac{1}{y}+1)(\frac{1}{z}+1)} \geq \frac{3}{4}[/tex]
[tex]\Leftrightarrow \sum \frac{x^4yz}{(y+1)(z+1)} \geq \frac{3}{4} \Leftrightarrow \sum \frac{x^3}{(y+1)(z+1)} \geq \frac{3}{4}[/tex]
Áp dụng BĐT AM-GM:
[tex]\sum \frac{x^3}{(y+1)(z+1)} + \sum \frac{y+1}{8}+\sum\frac{z+1}{8} \geq 3\sum \sqrt[3]{\frac{x^3(y+1)(z+1)}{64(y+1)(z+1)}}=\frac{3}{4}\sum x[/tex]
[tex]\Rightarrow \sum \frac{x^3}{(y+1)(z+1)} \geq \frac{3}{4} \sum x - \frac{1}{4}\sum (\sum (x+1)) = \frac{1}{2}(x+y+z)-\frac{3}{4} \geq \frac{1}{2}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{4}[/tex]
Dấu "=" xảy ra khi [tex]x=y=z=1 \Leftrightarrow a=b=c=1[/tex]