[tex]a\sqrt{b^{2}+1}+b\sqrt{c^{2}+1}+c\sqrt{a^{2}+1}=\sqrt{a^2b^2+a^2}+\sqrt{b^2c^2+b^2}+\sqrt{c^2a^2+c^2}[/tex]
Áp dụng BĐT Minkovsky ta có: [tex]\sqrt{a^2b^2+a^2}+\sqrt{b^2c^2+b^2}+\sqrt{c^2a^2+c^2}\geq \sqrt{(ab+bc+ca)^2+(a+b+c)^2}\geq \sqrt{1+3(ab+bc+ca)}=\sqrt{1+3}=2(đpcm)[/tex]