Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Cho a, b, c >0. Chứng minh
1. [tex]\frac{(a+1)(a+2)(a+3)(a+4)}{32a^2}\geq \sqrt{6}[/tex]
2. [tex]a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}[/tex]
3. Biết [tex]\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\geq 2. Chứng minh abc\leq \frac{1}{8}[/tex]
4. [tex](a^2+b^2+c^2)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c})\geq \frac{3}{2}(a+b+c)[/tex]
5. [tex]\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b }\geq \frac{3}{2}[/tex]
6. [tex]\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{c+a}+\frac{c+a}{b}+\frac{c}{a+b}+\frac{a+b}{c}\geq \frac{15}{2}[/tex]
7. [tex]\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}[/tex]
8. [tex]\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{c^2+a^2}\leq \frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})[/tex]
9. [tex]\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{a+b+c}{2}[/tex]
1. [tex]\frac{(a+1)(a+2)(a+3)(a+4)}{32a^2}\geq \sqrt{6}[/tex]
2. [tex]a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}[/tex]
3. Biết [tex]\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\geq 2. Chứng minh abc\leq \frac{1}{8}[/tex]
4. [tex](a^2+b^2+c^2)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c})\geq \frac{3}{2}(a+b+c)[/tex]
5. [tex]\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b }\geq \frac{3}{2}[/tex]
6. [tex]\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{c+a}+\frac{c+a}{b}+\frac{c}{a+b}+\frac{a+b}{c}\geq \frac{15}{2}[/tex]
7. [tex]\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}[/tex]
8. [tex]\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{c^2+a^2}\leq \frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})[/tex]
9. [tex]\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{a+b+c}{2}[/tex]