P
pl09
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Cho $a,b,c >0$ . Chứng minh rằng:
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{a^{2}+2b^{2}}{a^{3}+2b^{3}}+\dfrac{b^{2}+2c^{2}}{b^{3}+2c^{3}}+\dfrac{c^{2}+2a^{2}}{c^{3}+2a^{3}}$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{a^{2}+2b^{2}}{a^{3}+2b^{3}}+\dfrac{b^{2}+2c^{2}}{b^{3}+2c^{3}}+\dfrac{c^{2}+2a^{2}}{c^{3}+2a^{3}}$
Last edited by a moderator: