chứng minh bất đẳng thức

M

minhhieupy2000

Cho a,b,c,d > 0 Chứng minh
$\dfrac{a^2}{b^5} +\dfrac{b^2}{c^5} + \dfrac{c^2}{d^5} +\dfrac{d^2}{a^5} \ge \dfrac{1}{a^3} +\dfrac{1}{b^3} + \dfrac{1}{c^3} +\dfrac{1}{d^3}$

Ta có : $ \sum({\dfrac{3a^2}{b^5}+\dfrac{2}{a^3}}) \ge \sum{5.\sqrt[5]{(\dfrac{a^2}{b^5})^3.(\dfrac{1}{a^3})^2}} = 5( \dfrac1{a^3} + \dfrac1{b^3} + \dfrac1{c^3} +\dfrac1{d^3} ) $

\Rightarrow $3( \dfrac{a^2}{b^5} + \dfrac{b^2}{c^5} + \dfrac{c^2}{d^5} + \dfrac{d^2}{a^5}) + 2(\dfrac1{a^3} + \dfrac1{b^3} + \dfrac1{c^3}+ \dfrac1{d^3}) \ge 5(\dfrac1{a^3} + \dfrac1{b^3} + \dfrac1{c^3} +\dfrac1{d^3})$

Rút gọn BĐT trên ta đc $$ĐPCM$$.
 
Top Bottom