Chứng minh bất đẳng thức

V

vansang02121998

$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a} \ge \dfrac{2}{2a+b+c}+\dfrac{2}{a+2b+c}+\dfrac{2}{a+b+2c} \ge \dfrac{2}{a+3}+\dfrac{2}{b+3}+\dfrac{2}{c+3} \ge \dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}$
 
Top Bottom