Chứng minh Bất đẳng thức?

H

hoang2821998

Last edited by a moderator:
H

hoangcoi9999

a) [tex]\frac{a^2+b^2}{{a-b}[/tex] [tex]\geq[/tex] 2[tex]\sqrt{2}[/tex]
với [tex]\left\{ \begin{array}{l} a>b \\ ab=1 \end{array} \right.[/tex]

b)[tex]sin^4x.cos^2x[/tex] [tex]\leq[/tex] [tex]\frac{4}{27}[/tex]

a) [TEX]\frac{a^2+b^2}{{a-b} [/TEX]
[TEX] = \frac{(a-b)^2 + 2ab}{{a-b}[/TEX]
[TEX] = \frac{2ab}{a-b} + (a-b)[/TEX]
[TEX] \geq 2 \sqrt{2ab}[/TEX] (co si)
=[TEX] 2 \sqrt{2}[/TEX]
Câu b)
[TEX]sin^4x.cos^2x = \frac {1}{2}.sin^2x.sin^2x.2.cos^2x[/TEX] \leq [TEX] \frac {1}{2} .\frac {(sin^2x+sin^2x+2.cos^2x)^3}{3^3}[/TEX]
= [TEX] \frac {1}{2}. \frac {8}{27} = \frac {4}{27} [/TEX]
 
Last edited by a moderator:
F

forum_

a.

$\dfrac{a^2 + b^2}{a - b} = \dfrac{a^2 - 2ab + b^2 + 2ab}{a - b}$

= $\dfrac{(a-b)^2+ 2ab}{a - b} = a-b + \dfrac{2ab}{a-b}$

\geq $2\sqrt[]{2ab} = 2\sqrt[]{2}$ - theo $Cauchy$

Dấu " = " xảy ra khi chỉ khi ...........
 
Top Bottom