Chứng minh bất đẳng thức

C

congchuaanhsang

Xét A=$\sqrt{ \dfrac{c(a-c)}{ab} }$+$\sqrt{ \dfrac{c(b-c)}{ab} }$

A=$\sqrt{ \dfrac{c}{b}.\dfrac{a-c}{a} }$+$\sqrt{ \dfrac{c}{a}.\dfrac{b-c}{b} }$

A=$\sqrt{ \dfrac{c}{b}.(1-\dfrac{c}{a}) }$+$\sqrt{ \dfrac{c}{a}.(1-\dfrac{c}{b}) }$

Áp dụng BĐT Cauchy ta có:

A\leq$\dfrac{\dfrac{c}{b}-\dfrac{c}{a}+1}{2}$+$\dfrac{\dfrac{c}{a}-\dfrac{c}{b}+1}{2}$

\LeftrightarrowA\leq$\dfrac{1}{2}$+$\dfrac{1}{2}$=1

\Rightarrow$\sqrt{c(a-c)}$+$\sqrt{c(b-c)}$\leq$\sqrt{ab}$
 
Top Bottom