$\eqalign{
& dat\;\frac{1}{a} = x;\;\frac{1}{b} = y;\;\frac{1}{c} = z \cr
& \to x + y - 2z = 0 \leftrightarrow x + y = 2z > 0 \cr
& \frac{{a + c}}{{2a - c}} + \frac{{b + c}}{{2b - c}} = \frac{{z + x}}{{2z - x}} + \frac{{z + y}}{{2z - y}} = \frac{{1 + \frac{x}{z}}}{{2 - \frac{x}{z}}} + \frac{{1 + \frac{y}{z}}}{{2 - \frac{y}{z}}} \cr
& dat\;\frac{x}{z} = m;\;\frac{y}{z} = n \to m + n = 2 \cr
& \to \frac{{a + c}}{{2a - c}} + \frac{{b + c}}{{2b - c}} = \frac{{1 + m}}{{2 - m}} + \frac{{1 + n}}{{2 - n}} = - 1 + \frac{3}{{2 - m}} - 1 + \frac{3}{{2 - n}} = - 2 + \frac{3}{{2 - m}} + \frac{3}{{2 - m}} \cr
& \cos i: \cr
& \frac{3}{{2 - m}} + \frac{3}{{2 - m}} + 6 = \frac{3}{{2 - m}} + \frac{3}{{2 - m}} + 3\left( {2 - m} \right) + 3\left( {2 - n} \right) \geqslant 12\;\left( {2 - m = n > 0\;2 - n = m > 0} \right) \cr
& \to \frac{{a + c}}{{2a - c}} + \frac{{b + c}}{{2b - c}} \geqslant 4 \cr
& dau = ... \cr} $