chứng minh bất đẳng thức

H

hthtb22

Ta có:
$P =\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}$

$P \le \dfrac{1}{4}(\dfrac{1}{a}+\dfrac{1}{b})+\dfrac{1}{4}(\dfrac{1}{b}+\dfrac{1}{c})+\dfrac{1}{4}(\dfrac{1}{c}+\dfrac{1}{a})$

$P \le \dfrac{1}{2}(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})$

Ta có:
$(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})^2 \le 3(\dfrac{1}{a^{2}}+\dfrac{1}{b^{2}}+\dfrac{1}{c^{2} })=81$

$\Rightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \le 9$

Nên $P \le \dfrac{9}{2}$

Dấu = xảy ra $\Leftrightarrow a=b=c=\dfrac{1}{3}$

 
N

nicola_tes0

tiếp 2 câu chứng minh bđt

1/cho a,b,c >0.chứng minh rằng :[tex]\frac{1}{2b+c}[/tex]+[tex]\frac{1}{2c+a}[/tex]+[tex]\frac{1}{2a+c}[/tex][tex]\ge[/tex][tex]\frac{3}{a+b+c}[/tex]
2/cho a,b,c là 3 số dương.cmr :[tex]\frac{1}{a}[/tex]+[tex]\frac{1}{b}[/tex]+[tex]\frac{1}{c}[/tex][tex]\ge[/tex][tex]\frac{9}{abc+2}[/tex]
 
H

hthtb22

Bài 1:
Áp dụng bất đẳng thức $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{9}{a+b+c}$.
Ta có:
$\dfrac{1}{2b+c}+\dfrac{1}{2c+a}+\dfrac{1}{2a+b} \ge \dfrac{9}{3(a+b+c)}=\dfrac{3}{a+b+c}$
Dấu = khi a=b=c


 
H

huytrandinh

bài 2
tưong đương với
$(abc+2)(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}) \geq 9$
$.abc+2=abc+1+1\geq 3\sqrt[3]{abc}$
$.\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\geq 3\sqrt[3]{\dfrac{1}{abc}}$
$=>(abc+2)(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})$
$\geq 3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9$
 
Top Bottom