Chứng minh bán kính $r_k=\frac{1}{2\sqrt{3}}[(2+\sqrt{3})^k-(2-\sqrt{3})^k]$

Y

yellow05010501

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho dãy số ${b_n}$ được xác định như sau: $b_{n+2}=4b_{n+1}-b_n, b_1=4, b_2=14$
a) Chứng minh rằng diện tích tam giác với các cạnh $b_{k-1},b_k,b_{k+1}$ là những số nguyên
b) Chứng minh rằng bán kính đường tròn nội tiếp tam giác được tính theo công thức
$$r_k=\frac{1}{2\sqrt{3}}[(2+\sqrt{3})^k-(2-\sqrt{3})^k]$$
 
Last edited by a moderator:
Top Bottom