Toán 7 Chứng Minh $A=\frac{1}{2!}+\frac{5}{3!}+\frac{11}{4!}+...+$ $\frac{n^2+1+n}{(n+1)!}<2$

S

soicon_boy_9x

Sở trường :))

Ta có:
Lấy từ đề bài luôn nhá
$\frac{n^2+n-1}{(n+1)!}=\frac{n(n+1)}{(n+1)!}-\frac{1}{((n+1)!}=\frac{1}{(n-1)!}-\frac{1}{((n+1)!}$
Từ đây lắp vào các vế khác được
$\frac{1}{2!}=1-\frac{1}{2!}(vì \ 0!=1)$
$\frac{5}{3!}=1-\frac{1}{3!}$
$\frac{11}{4!}=\frac{1}{2!}-\frac{1}{4!}$
...
$\frac{(n-1)^2+n-1}{n!}=\frac{1}{n-2!}-\frac{1}{n!}$
Vậy
$A=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{n-2!}-\frac{1}{n!}+\frac{1}{(n-1)!}-\frac{1}{((n+1)!}$
$A=(1+1)-(\frac{1}{2!}-\frac{1}{2!})-(\frac{1}{3!}-\frac{1}{3!})-(\frac{1}{n-2!}-\frac{1}{n-2!})-(\frac{1}{n-1!}-\frac{1}{n-1!})-\frac{1}{n!}\frac{1}{((n+1)!}$
$A=2-0-0-0-...-0-0-\frac{1}{n!}-\frac{1}{((n+1)!}=2-\frac{1}{n!}-\frac{1}{((n+1)!}<2(dpcm)$
 
Last edited by a moderator:
Top Bottom