Toán 9 Chứng minh $2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1})$

Ann Lee

Cựu Mod Toán
Thành viên
14 Tháng tám 2017
1,782
2,981
459
Hưng Yên
ĐKXĐ: $n \geq 1$
Ta có:
  • [tex]\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=\frac{2(\sqrt{n+1}-\sqrt{n})}{n+1-n}=2(\sqrt{n+1}-\sqrt{n})(1)[/tex]
  • [tex]\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2(\sqrt{n}-\sqrt{n-1})}{n-(n-1)}=2(\sqrt{n}-\sqrt{n-1})(2)[/tex]
Từ (1) và (2) suy ra đpcm
 
Top Bottom