Số cực trị của hàm số [tex]y=[f(x)+2021]^{2021}[/tex] trùng với số cực trị của hàm số $y=f(x)$ ( Có thể hiểu [tex]y'=2021.f'(x).[f(x)+2021]^{2020}[/tex], Xét $y'=0$ thì để là cực trị thì chỉ có nghiệm bội lẻ của $f'(x)=0$ ,còn $[f(x)+2021]^{2020}$ có nghiệm thì nó là bội chẵn nên không thỏa mãn)
$y=f(x)$ có 5 cực trị , chọn A