Toán 9 Cho $x,y,z>0$. Chứng minh $\frac{\sum x}{3\sqrt{3}}\geq \frac{\sum xy}{\sum \sqrt{x^2+xy+y^2}}$

Ann Lee

Cựu Mod Toán
Thành viên
14 Tháng tám 2017
1,782
2,981
459
Hưng Yên
Đặt [tex]A=\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}+\sqrt{x^2+xy+y^2}\\=\sqrt{\left ( y+\frac{z}{2} \right )^2+\left ( \frac{\sqrt{3}z}{2} \right )^2}+\sqrt{\left ( z+\frac{x}{2} \right )^2+\left ( \frac{\sqrt{3}x}{2} \right )^2}+\sqrt{\left ( x+\frac{y}{2} \right )^2+\left ( \frac{\sqrt{3}y}{2} \right )^2}[/tex]
Áp dụng BĐT Minkovsky ta có:
[tex]A\geq \sqrt{\left ( x+y+z+\frac{x+y+z}{2} \right )^2+\left ( \frac{\sqrt{3}x}{2}+\frac{\sqrt{3}y}{2}+\frac{\sqrt{3}z}{2} \right )^2}=\sqrt{3(x+y+z)^2}=\sqrt{3}(x+y+z)[/tex]
Suy ra [tex]\frac{xy+yz+zx}{A}\leq \frac{xy+yz+zx}{\sqrt{3}(x+y+z)}\leq \frac{(x+y+z)^2}{3\sqrt{3}(x+y+z)}=\frac{x+y+z}{3\sqrt{3}}(dpcm)[/tex]
Dấu = xảy ra khi [tex]x=y=z[/tex]
 
Top Bottom