Có $2(x+y) \ge 2(\sqrt{x}+\sqrt{y})^2$
$\Rightarrow \frac{x+y}{2} \ge \frac{(\sqrt{x}+\sqrt{y})^2}{4}$
[tex]\frac{x\sqrt{y}+y\sqrt{x}}{x+y}=\sqrt{xy}\cdot \frac{\sqrt{x}+\sqrt{y}}{x+y}\leq \frac{x+y}{2}\cdot \frac{\sqrt{x}+\sqrt{y}}{x+y}=\frac{\sqrt{x}+\sqrt{y}}{2}[/tex]
Suy ra $\frac{x+y}{2} -\frac{x\sqrt{y}+y\sqrt{x}}{x+y}+\frac{3}{4} \ge \frac{(\sqrt{x}+\sqrt{y})^2}{4}- \frac{\sqrt{x}+\sqrt{y}}{2}+\frac{3}{4}$
$=( \frac{\sqrt{x}+\sqrt{y}}{2}-\frac{1}{2})^2+\frac{1}{2} \ge \frac{1}{2}$
Còn $4040+\frac{x}{y}+\frac{y}{x} \ge 4040+2=4042$ (chứng minh dễ lắm =))
Suy ra $T \ge \cdot 4042=2021$
Dấu $"="$ xảy ra khi $x=y=\frac{1}{4}$