Cho [tex]a;b;c>0[/tex]. Chứng minh rằng
[tex]\frac{a+2b}{a^{2}+2b^{2}}+\frac{b+2c}{b^{2}+2c^{2}}+\frac{c+2a}{c^{2}+2a^{2}}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}[/tex]
Áp dụng BĐT Cauchy ta có:
[tex](a+2b)^{2}=a^{2}+4b^{2}+4ab=a^{2}+4b^{2}+2.ab\leq a^{2}+4b^{2}+2(a^{2}+b^{2})=3(a^{2}+2b^{2})\Rightarrow a^{2}+2b^{2}\geq \frac{(a+2b)^{2}}{3}[/tex]
[tex]\Rightarrow \frac{a+2b}{a^{2}+2b^{2}}\leq \frac{a+2b}{\frac{(a+2b)^{2}}{3}}=\frac{3}{a+2b}=\frac{1}{3}.\frac{9}{a+b+b}\leq \frac{1}{3}\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{b} \right )[/tex]
Tương tự: [tex]\frac{b+2c}{b^{2}+2c^{2}}\leq \frac{1}{3}\left ( \frac{1}{b}+\frac{1}{c}+\frac{1}{c} \right );\frac{c+2a}{c^{2}+2a^{2}}\leq \frac{1}{3}\left ( \frac{1}{c}+\frac{1}{a}+\frac{1}{a} \right )[/tex]
Cộng vế với vế 3 BĐT cũng chiều trên ta được:
[tex]\frac{a+2b}{a^{2}+2b^{2}}+\frac{b+2c}{b^{2}+2c^{2}}+\frac{c+2a}{c^{2}+2a^{2}}\leq\frac{1}{3}\left ( \frac{3}{a}+\frac{3}{b}+\frac{3}{c} \right )=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}(dpcm)[/tex]
Dấu = xảy ra khi [tex]a=b=c[/tex]