Toán 9 Cho [tex]a,b,c>0;a+b+c\leq \frac{3}{2}[/tex]. Tìm GTNN của $S=\sum \sqrt{a^2+\frac{1}{b^2}}$

Ann Lee

Cựu Mod Toán
Thành viên
14 Tháng tám 2017
1,782
2,981
459
Hưng Yên
Áp dụng BĐT Minkovsky ta có:
[tex]S=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\\\geq \sqrt{(a+b)^2+\left ( \frac{1}{a}+\frac{1}{b} \right )^2}+\sqrt{c^2+\frac{1}{a^2}}\\\geq \sqrt{(a+b+c)^2+\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^2}\\=\sqrt{(a+b+c)^2+\left ( \frac{9}{a+b+c} \right )^2}\\=\sqrt{(a+b+c)^2+\frac{81}{16(a+b+c)^2}+\frac{1215}{16(a+b+c)^2}}\\\geq \sqrt{2\sqrt{(a+b+c)^2.\frac{81}{16(a+b+c)^2}}+\frac{1215}{16.\frac{3^2}{2^2}}}\\=\frac{3\sqrt{17}}{2}[/tex]
Dấu = xảy ra khi [tex]a=b=c=\frac{1}{2}[/tex]
 
Top Bottom