$a^2\geq a^2-(b-c)^2 \Rightarrow \dfrac{1}{a^2}\leq\dfrac{1}{a^2-(b-c)^2}$
Suy ra ta có $\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\leq\dfrac{1}{a^2-(b-c)^2}+\dfrac{1}{b^2-(c-a)^2}+\dfrac{1}{c^2-(a-b)^2}$
$=\dfrac{1}{(a-b+c)(a+b-c)}+\dfrac{1}{(b-c+a)(b+c-a)}+\dfrac{1}{(c-a+b)(c+a-b)}$
$=\dfrac{1}{4(p-b)(p-c)}+\dfrac{1}{4(p-c)(p-a)}+\dfrac{1}{4(p-a)(p-b)}=\dfrac{p}{4(p-a)(p-b)(p-c)}=\dfrac{p^2}{4p(p-a)(p-b)(p-c)}=\dfrac{p^2}{4S^2}=\dfrac{1}{4r^2}$
Có gì khúc mắc e hỏi lại c nhé <3