Bài 1: Cho tam giác ABC nhọn, đường cao BD và CE cắt nhau tại H ; AH cắt BC ở I . Chứng minh rằng
[tex]\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}=1[/tex]
Hình tự vẽ nhé !
Bailam .
[tex]\Delta ABC [/tex]
[tex]BD\perp AC [/tex] ( BD đường cao theo GT )
[tex]CE\perp AB [/tex] ( CE đường cao theo GT )
Và BD cắt CE tại H
[tex]\Rightarrow H là trực tâm \Delta ABC[/tex]
[tex]\rightarrow AI\perp BC[/tex]
Có
S
ABC = [tex]\frac{1}{2}.AI.BC[/tex]
SBHC = [tex]\frac{1}{2}.HI.BC[/tex]
[tex]\Rightarrow \frac{S[/tex][tex][SIZE=1]BHC[/SIZE][SIZE=4]}{S[/SIZE][SIZE=1]ABC[/SIZE][SIZE=4]}=\frac{HI}{AI}[/SIZE][/tex]
(1)
S
ABC = [tex]\frac{1}{2}.BD.AC[/tex]
SAHC = [tex]\frac{1}{2}.HD.AC[/tex]
[tex]\Rightarrow \frac{S[/tex][tex][SIZE=1]AHC[/SIZE][SIZE=4]}{S[/SIZE][SIZE=1]ABC[/SIZE][SIZE=4]}=\frac{HD}{BD}[/SIZE][/tex]
(2)
SABC = [tex]\frac{1}{2}.CE.AB[/tex]
SAHB = [tex]\frac{1}{2}.HE.AB[/tex]
[tex]\Rightarrow \frac{S[/tex][tex][SIZE=1]AHB[/SIZE][SIZE=4]}{S[/SIZE][SIZE=1]ABC[/SIZE][SIZE=4]}=\frac{HE}{CE}[/SIZE][/tex]
(3)
(1),(2),(3) [tex]\Rightarrow \frac{S[/tex][tex][SIZE=1]CHB[/SIZE][SIZE=4]}{S[/SIZE][SIZE=1]ABC[/SIZE][SIZE=4]}+\frac{S[/SIZE][SIZE=1]AHC[/SIZE][SIZE=4]}{S[/SIZE][SIZE=1]ABC[/SIZE][SIZE=4]}+\frac{S[/SIZE][SIZE=1]BHA[/SIZE][SIZE=4]}{S[/SIZE][SIZE=1]ABC[/SIZE][SIZE=4]}=\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}[/SIZE][/tex]
[tex]\rightarrow \frac{S[/tex][tex][SIZE=1]ABC[/SIZE][SIZE=4]}{S[/SIZE][SIZE=1]ABC[/SIZE][SIZE=4]}=\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}[/SIZE][/tex]
[tex]\rightarrow \frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}=1[/tex] (đpcm)