Toán 9 Cho tam giác ABC có 3 góc nhọn nội tiếp đường trong (O;R).

Huỳnh Xuan Meo

Học sinh chăm học
Thành viên
16 Tháng một 2018
135
17
61
Sóc Trăng
THCS Phú Lộc
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho tam giác ABC có 3 góc nhọn nội tiếp đường trong (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gọi G là trọng tâm của tam giác ABC.
a. Chứng minh [tex]S_{AHG} = 2S_{AGO}[/tex]
b. Chứng minh [tex]\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1[/tex]
 

Huỳnh Xuan Meo

Học sinh chăm học
Thành viên
16 Tháng một 2018
135
17
61
Sóc Trăng
THCS Phú Lộc
upload_2018-11-14_20-33-18.png
Cho tam giác ABC có 3 góc nhọn nội tiếp đường trong (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gọi G là trọng tâm của tam giác ABC.
 

Tạ Đặng Vĩnh Phúc

Cựu Trưởng nhóm Toán
Thành viên
10 Tháng mười một 2013
1,559
2,715
386
25
Cần Thơ
Đại học Cần Thơ
1) Dựa vào định lý Ơ-le, ta suy ra HG = 2GO và H, G, O thẳng hàng. Điều này dẫn đến kết luận
2) Em thử sử dụng tam giác đồng dạng HAF và HDC xem sao
 
Top Bottom