Cho mình hỏi bài này làm như thế nào?

C

chaugiang81


$A=\dfrac{1}{2} + \dfrac{1}{2^2} + \dfrac{1}{2^3} + ... + \dfrac{1}{2^{100}}$
$2A= 1 + \dfrac{1}{2} + \dfrac{1}{2^2 } + .. + \dfrac{1}{2^{99}}$
$2A-A= 1 + \dfrac{1}{2} + \dfrac{1}{2^2 } + ... + \dfrac{1}{2^{99}} - (\dfrac{1}{2} + \dfrac{1}{2^2} + \dfrac{1}{2^3} + ... + \dfrac{1}{2^{100}})$
$A= 1- \dfrac{1}{2^{100}}$
 
V

vanmanh2001

$M = (1 - \dfrac{1}{2^2})( 1 - \dfrac{1}{3^2})...(1 - \dfrac{1}{30^2})$
$= \dfrac{1.3}{2^2} . \dfrac{2.4}{3^2} .... \dfrac{29.31}{30^2}$
$= \dfrac{1.2.3.4.5...31}{(2.3...30)^2}$
$= \dfrac{31}{2.3....30}$
 
P

pinkylun

Cách 2: + bài mạnh bị sai :v

Bài 2:

áp dụng $1-a^2=1-a+a-a^2=(1-a)+a(1-a)=(1-a)(1+a)$

$<=>B= (1 - \dfrac{1}{2^2})( 1 - \dfrac{1}{3^2})...(1 - \dfrac{1}{30^2})$

$=(1-\dfrac{1}{2})(1+\dfrac{1}{2})(1-\dfrac{1}{3})(1+\dfrac{1}{3})..(1-\dfrac{1}{30})(1+\dfrac{1}{30})$

$=\dfrac{1}{2}.\dfrac{3}{2}.\dfrac{2}{3}.\dfrac{4}{3}...\dfrac{29}{30}.\dfrac{31}{30}$

$=\dfrac{1.3.2.4.3.5...29.31}{(2.3...30)^2}$

$=\dfrac{(1.2.3...29)(3.4.5...31)}{(2.3...30)^2}$

$=\dfrac{31}{2.30}$

$=\dfrac{31}{60}$
 
Last edited by a moderator:
Top Bottom