Cho mình hỏi 2 bài tích phân này

L

luyngu99

T

tuyn

[tex]\fbox{\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\ \frac{sin^4 x\ +\ cos^4 x}{3^x \ +\ 1}dx}[/tex]
Đặt [TEX]x=-t \Rightarrow dx=-dt[/TEX]
[TEX]I= \int_{- \frac{ \pi}{4}}^{ \frac{ \pi}{4}} \frac{sin^4t+cos^4t}{3^{-t}+1}dt= \int_{- \frac{ \pi}{4}}^{ \frac{ \pi}{4}} \frac{sin^4x+cos^4x}{3^{-x}+1}dx[/TEX]
[TEX]\Rightarrow 2I=I+I= \int_{- \frac{ \pi}{4}}^{ \frac{ \pi}{4}} \frac{sin^4x+cos^4x}{3^{x}+1}dt+ \int_{- \frac{ \pi}{4}}^{ \frac{ \pi}{4}} \frac{sin^4x+cos^4x}{3^{-x}+1}dt[/TEX]
[TEX]= \int_{- \frac{ \pi}{4}}^{ \frac{ \pi}{4}} (sin^4x+cos^4x)dx= \int_{- \frac{ \pi}{4}}^{ \frac{ \pi}{4}} ( \frac{3}{4}+ \frac{1}{4} cos4x)dx[/TEX]
[TEX]=( \frac{3}{4}x+ \frac{1}{16}sin4x)|_{ \frac{ \pi}{4}}^{ \frac{ \pi}{4}}=...[/TEX]
[tex]\fbox{\int\limits_{0}^{\pi}\ \frac{cos 2x}{sin x\ +\ cos x\ +\ 2}dx}[/tex]
[TEX]I= \int_{0}^{ \pi} \frac{tdt}{t+2} (t=sint+cost)[/TEX]
[TEX]cos2x=(cosx+sinx)(cosx-sinx)[/TEX]
 
Top Bottom