Toán 8 Cho $\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=2022$

Cáp Ngọc Bảo Phương

TMod Toán
Cu li diễn đàn
8 Tháng mười một 2021
914
2
1,528
171
Bà Rịa - Vũng Tàu
cho a^2/a+b + b^2/b+2 +c^2/c+a = 2022. Tính gtbt b^2/a+b + c^2/b+c +a^2/c+a

$\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}-\dfrac{b^2}{a+b}-\dfrac{c^2}{b+c}-\dfrac{a^2}{a+c}$
$=\dfrac{a^2-b^2}{a+b}+\dfrac{b^2-c^2}{b+c}+\dfrac{c^2-a^2}{a+c}$
$=a-b+b-c+c-a=0$
$\Rightarrow \dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}=2022$
Có gì khúc mắc em hỏi lại nhé <3
 
Top Bottom