Cho dãy số $u_{n} = \frac{2n+1}{n^{2}(n+1)^{2}}$. Tính tổng S=u1+u2 +...u(n)

E

eye_smile

$u_n=\dfrac{2n+1}{n^2(n+1)^2}=\dfrac{(n+1)^2-n^2}{n^2(n+1)^2}=\dfrac{1}{n^2}-\dfrac{1}{(n+1)^2}$

\Rightarrow $S_n=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{n^2}-\dfrac{1}{(n+1)^2}=1-\dfrac{1}{(n+1)^2}$
 
Top Bottom