Ta có : [tex] \frac{1}{x^{2}+x}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}\cdot \frac{x}{2}\cdot \frac{x+1}{4}}=\frac{3}{2}[/tex] (BĐT Cô-si)
Tương tự, [TEX]\frac{1}{y^{2}+y}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}[/TEX];
[TEX]\frac{1}{z^{2}+z}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}[/TEX]
Cộng 3 cái trên lại, ta có: [tex]\frac{1}{x^{2}+x}+\frac{1}{y^{2}+y}+\frac{1}{z^{2}+z}+\frac{x+y+z}{2}+\frac{3+x+y+z}{4}\geq \frac{3}{2}\cdot 3[/tex]
[tex] \Leftrightarrow\frac{1}{x^{2}+x}+\frac{1}{y^{2}+y}+\frac{1}{z^{2}+z}+\frac{3}{2}+\frac{6}{4}\geq \frac{9}{2} [/tex]
[tex] \Leftrightarrow\frac{1}{x^{2}+x}+\frac{1}{y^{2}+y}+\frac{1}{z^{2}+z}+3 \geq \frac{9}{2} [/tex]
[tex] \Leftrightarrow\frac{1}{x^{2}+x}+\frac{1}{y^{2}+y}+\frac{1}{z^{2}+z} \geq \frac{3}{2} [/tex] (đpcm)