Cho biểu thức: P= [tex]\frac{4\sqrt{x}+4}{x+2\sqrt{x}+5}[/tex] (x>0)
a. Chứng minh P[tex]\leq[/tex] 1
b. Tìm x thỏa mãn: ([tex]\sqrt{x}+1[/tex]).P=1
a.
$ 1 - P = 1 - \frac{4\sqrt{x} + 4}{x + 2\sqrt{x} + 5} = \frac{x - 2\sqrt{x} + 1}{x + 2\sqrt{x} + 1 + 4} = \frac{(\sqrt{x} - 1)^2}{(\sqrt{x} + 1)^2 + 4} \\ (\sqrt{x} - 1)^2 \geq 0;(\sqrt{x} + 1)^2 + 4 \geq 4 > 0 \Rightarrow \frac{(\sqrt{x} - 1)^2}{(\sqrt{x} + 1)^2 + 4} \geq 0 \Rightarrow P \le 1 $
b.
$
(\sqrt{x} + 1) . P = 1 \\ \Leftrightarrow \frac{4x + 8\sqrt{x} + 4}{x + 2\sqrt{x} + 5} = 1 \\ \Rightarrow 4x + 8\sqrt{x} + 4 = x + 2\sqrt{x} + 5 \\ \Leftrightarrow 3x + 6\sqrt{x} = 1 \\ Đặt \; \sqrt{x} = t \\ pt \Leftrightarrow 3t^2 + 6t = 1 \\ \Leftrightarrow 3t^2 + 6t - 1 = 0 \\ \Delta = 6^2 - 4 . 3 . (-1) = 36 + 12 = 48 \\ \Rightarrow \left\{\begin{matrix}
t_{1} = \frac{-6 + \sqrt{48}}{6} = \frac{\sqrt{48}}{\sqrt{36}} - 1 = \frac{2}{\sqrt{3}}- 1 \\
t_{2} = \frac{-6 - \sqrt{48}}{6} = \frac{-\sqrt{48}}{\sqrt{36}} - 1 = \frac{-2}{\sqrt{3}}- 1
\end{matrix}\right.
\Rightarrow \left\{\begin{matrix}
x_{1} = t_{1}^2 = \frac{4}{3} - \frac{4}{\sqrt{3}} + 1 = \frac{7 - 4\sqrt{3}}{3}\\
x_{2} = t_{2}^2 = \frac{4}{3} - \frac{4}{\sqrt{3}} + 1 = \frac{7 - 4\sqrt{3}}{3}
\end{matrix}\right. \\ \Rightarrow x = \frac{7 - 4\sqrt{3}}{3} $
Đúng chưa nhỉ?