Cho A= [tex]\frac{\sqrt{a}+6}{\sqrt{a}+1}[/tex]
Tính A khi a=[tex](\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}})^{2}[/tex]
Xét: [tex]\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{(\sqrt{3}+1)^2}}=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3}+1}=\frac{(2\sqrt{2}+\sqrt{6})(3-\sqrt{3})}{9-3}=\frac{\sqrt{6}+3\sqrt{2}}{6}[/tex]
Tương tự: [tex]\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{-\sqrt{6}+3\sqrt{2}}{6}[/tex]
Suy ra [tex]a=(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}})^{2}=\left ( \frac{\sqrt{6}+3\sqrt{2}}{6}+\frac{-\sqrt{6}+3\sqrt{2}}{6} \right )^2=\left ( \frac{6\sqrt{2}}{6} \right )^2=(\sqrt{2})^2=2[/tex]
Khi đó [tex]A=\frac{\sqrt{a}+6}{\sqrt{a}+1}=\frac{\sqrt{2}+6}{\sqrt{2}+1}=\frac{(\sqrt{2}+6)(\sqrt{2}-1)}{2-1}=5\sqrt{2}-4[/tex]