Cho:$a^3+b^3+c^3=3abc. Cmr:a+b+c=0$

K

khongphaibang

Ta có :$a^3+b^3+c^3=3abc$

\Leftrightarrow$a^3+b^3+c^3-3abc=0$

\Leftrightarrow$(a+b)^3 +c^3 -3ab(a+b) -3abc=0$

\Leftrightarrow$(a+b+c)[(a+b)^2 -(a+b).c +c^2] -3ab(a+b+c)=0$

\Leftrightarrow$(a+b+c)(a^2+b^2+c^2 -ab -bc -ca )=0$

\Leftrightarrow$1/2.(a+b+c)[(a-b)^2 + (b-c)^2 + (c-a)^2 ]=0$


\Rightarrow$a+b+c =o hoặc (a-b)^2 + (b-c)^2 + (c-a)^2 =0$

\Rightarrow$đpcm$
:D:D:D:D:D:)>-:)>-:)>-
 
Last edited by a moderator:
  • Like
Reactions: mỳ gói
Top Bottom