Đặt $f\left( x \right) = {2^{2018}}\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)$
$\begin{array}{l}
f'\left( x \right) = {2^{2018}}\left[ {\left( {x - {x_2}} \right)\left( {x - {x_3}} \right) + \left( {x - {x_1}} \right)\left( {x - {x_3}} \right) + \left( {x - {x_1}} \right)\left( {x - {x_2}} \right)} \right]\\
\Rightarrow \left\{ \begin{array}{l}
f'\left( {{x_1}} \right) = {2^{2018}}\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\\
f'\left( {{x_2}} \right) = {2^{2018}}\left( {x - {x_1}} \right)\left( {x - {x_3}} \right)\\
f'\left( {{x_3}} \right) = {2^{2018}}\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)
\end{array} \right.\\
P = \frac{1}{{f'\left( {{x_1}} \right)}} + \frac{1}{{f'\left( {{x_2}} \right)}} + \frac{1}{{f'\left( {{x_3}} \right)}} = \frac{1}{{{2^{2018}}}}\left( {\frac{1}{{\left( {{x_1} - {x_2}} \right)\left( {{x_1} - {x_3}} \right)}} + \frac{1}{{\left( {{x_2} - {x_1}} \right)\left( {{x_2} - {x_3}} \right)}} + \frac{1}{{\left( {{x_3} - {x_1}} \right)\left( {{x_3} - {x_2}} \right)}}} \right)\\
= \frac{1}{{{2^{2018}}}}.\frac{{ - \left( {{x_2} - {x_3}} \right) - \left( {{x_3} - {x_1}} \right) - \left( {{x_1} - {x_2}} \right)}}{{\left( {x{}_1 - {x_2}} \right)\left( {{x_2} - {x_3}} \right)\left( {{x_3} - {x_1}} \right)}} = \frac{1}{{{2^{2018}}}}.\frac{0}{{\left( {x{}_1 - {x_2}} \right)\left( {{x_2} - {x_3}} \right)\left( {{x_3} - {x_1}} \right)}} = 0.
\end{array}$ |
[TBODY]
[/TBODY]
Vậy chọn đáp án A