Câu 1:
Ta có: [tex]M = \sqrt{4 + \sqrt{7}} - \sqrt{4 - \sqrt{7}}
[tex]\Rightarrow[/tex] M\sqrt{2} = \sqrt{2}(\sqrt{4 + \sqrt{7}} - \sqrt{4 - \sqrt{7}})
[tex]\Rightarrow[/tex] M\sqrt{2} = \sqrt{2}.\sqrt{4 + \sqrt{7}} - \sqrt{2}.\sqrt{4 - \sqrt{7}}
[tex]\Rightarrow[/tex] M\sqrt{2} = \sqrt{8 + 2\sqrt{7}} - \sqrt{8 - 2\sqrt{7}}
[tex]\Rightarrow[/tex] M\sqrt{2} = \sqrt{(\sqrt{7} + 1)^{2}} - \sqrt{(\sqrt{7} - 1)^{2}}
[tex]\Rightarrow[/tex] M\sqrt{2} = \left | \sqrt{7} + 1 \right | - \left | \sqrt{7} - 1 \right |
[tex]\Rightarrow[/tex] M\sqrt{2} = \sqrt{7} + 1 - \sqrt{7} + 1
[tex]\Rightarrow[/tex] M\sqrt{2} = 2
[tex]\Rightarrow[/tex] M = \sqrt{2}[/tex]
Câu 2:
Ta có: [tex]P = \sqrt{x -5} + \sqrt{13 - x}
[tex]\Rightarrow[/tex] P^{2} = (\sqrt{x -5} + \sqrt{13 - x})^{2}
[tex]\Rightarrow[/tex] P^{2} = x - 5 + 13 - x + 2\sqrt{(x - 5)(13 - x)}
[tex]\Rightarrow[/tex] P^{2} = 8 + 2\sqrt{13x - x^{2} - 65 + 5x}
[tex]\Rightarrow[/tex] P^{2} = 8 + 2\sqrt{18x - x^{2} - 65}
[tex]\Rightarrow[/tex] P^{2} = 8 + 2\sqrt{-(x^{2} - 18x + 65)}
[tex]\Rightarrow[/tex] P^{2} = 8 + 2\sqrt{-(x - 9)^{2} + 16}[/tex]
Vì [tex](x - 9)^{2} \geq 0[/tex] nên [tex]-(x - 9)^{2} \leq 0[/tex]
[tex]\Rightarrow -(x - 9)^{2} + 16 \leq 16
\Rightarrow \sqrt{-(x - 9)^{2} + 16} \leq \sqrt{16} = 4
\Rightarrow 2\sqrt{-(x - 9)^{2} + 16} \leq 8
\Rightarrow 8 + 2\sqrt{-(x - 9)^{2} + 16} \leq 16
\Rightarrow P^{2} \leq 16
\Rightarrow -4 \leq P \leq 4
\Rightarrow Max P = 4[/tex]
Dấu " = " xảy ra [tex]\Leftrightarrow (x - 9)^{2} = 0
\Leftrightarrow x - 9 = 0
\Leftrightarrow x = 9[/tex]
Vậy max P = 4 khi x = 9