Bài 5:
a) [tex]A=3+\sqrt{2x^2-4x+3}=3+\sqrt{2(x-1)^2+1} \geq 3+\sqrt{1}=4[/tex]
Dấu "=" xảy ra khi [tex]x=1[/tex]
b) [tex]B=\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2018[/tex]
[tex]=\sqrt{(x-y)^2+2(x-y)+1+4}+2(y^2-4y+4)+2010[/tex]
[tex]=\sqrt{(x-y+1)^2+4}+2(y-2)^2+2010 \geq \sqrt{4}+2010=2012[/tex]
Dấu "=" xảy ra khi [tex]\left\{\begin{matrix} x=y-1 & \\y=2 & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x=1 & \\y=2 & \end{matrix}\right.[/tex]
Bài 6:
Thay [TEX]ab+bc+ca=1[/TEX] vào biểu thức:
[tex]A=\sqrt{(a^2+ab+bc+ca)(b^2+ab+bc+ca)(c^2+ab+bc+ca)}[/tex]
[tex]=\sqrt{(a+b)(c+a)(b+c)(a+b)(c+a)(b+c)}[/tex]
[tex]=\sqrt{[(a+b)(b+c)(c+a)]^2}=(a+b)(b+c)(c+a) \in Q[/tex]