căn bậc hai lớp 9

D

dien0709

$A=\frac{1}{2\sqrt[]{1}+1\sqrt[]{2}}+\frac{1}{3\sqrt[]{2}+2\sqrt[]{3}}+\frac{1}{4\sqrt[]{3}+3\sqrt[]{4}}+...+\frac{1}{2015\sqrt[]{2014}+2014\sqrt[]{2015}}$

$A=\dfrac{2\sqrt[]{1}-1\sqrt[]{2}}{1.2}+\dfrac{3\sqrt[]{2}-2\sqrt[]{3}}{2.3}+...+\dfrac{2015\sqrt[]{2014}-2014\sqrt[]{2015}}{2014.2015}$

$A=(1-1/2)(2-\sqrt{2})+(1/2-1/3)(3\sqrt{2}-2\sqrt{3})+....(1/2014-1/2015)(2015\sqrt{2014}-2014\sqrt{2015})$

$A=(1-\dfrac{1}{\sqrt{2}})+(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}})+...$

$A=1-\dfrac{1}{\sqrt{2015}}$
 
Top Bottom