Ta có : đặt [tex]ax^3=bx^3=cx^3=k^3[/tex] (1)
[tex]=>\left\{\begin{matrix} a=\frac{k^3}{x^3} & & & \\ b=\frac{k^3}{y^3}& & & \\ c=\frac{k^3}{z^3}& & & \end{matrix}\right.[/tex]
[tex]=>\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=k(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=k[/tex]
Từ (1) [tex]=>\left\{\begin{matrix} ax^2=\frac{k^3}{x} & & & \\ by^2=\frac{k^3}{y} & & & \\ cz^2=\frac{k^3}{z}& & & \end{matrix}\right.[/tex]
[tex]=>\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{k^3(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})}=k[/tex]
=>đpcm