1.Ta có: [tex]\sqrt[6]{25+4\sqrt{6}}=\sqrt[6]{(1+2\sqrt{6})^2}=\sqrt[3]{1+2\sqrt{6}}\Rightarrow a=1[/tex]
2. Đặt [tex]\sqrt[4]{a}=x,\sqrt[4]{b}=y[/tex].
Khi đó [tex]VT=\frac{x^4+2x^2y^2+9y^4}{x^2+3y^2-2xy}-2y^2=\frac{x^4+2x^2y^2+9y^4-2y^2(x^2+3y^2-2xy)}{x^2-2xy+3y^2}=\frac{x^4+4xy^3+3y^4}{x^2-2xy+3y^2}=\frac{(x^2+2xy+y^2)(x^2-2xy+3y^2)}{x^2-2xy+3y^2}=x^2+2xy+y^2=(x+y)^2=VP[/tex]