căn bậc 2

Nữ Thần Mặt Trăng

Cựu Mod Toán
Thành viên
TV BQT tích cực 2017
28 Tháng hai 2017
4,472
5,490
779
Hà Nội
THPT Đồng Quan
Làm hộ mình bài 12 đi ạ
12)
a) $C$ xác định $\Leftrightarrow a\geq 0;b\geq 0;a\neq b$
b) $C_2=(\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{a}{b-a}): (\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{a}}{a+b+2\sqrt{ab}})
\\=\left [\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{-a}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})} \right ]:\left [ \dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{a}}{(\sqrt{a}+\sqrt{b})^2} \right ]
\\=\dfrac{\sqrt{a}(\sqrt{a}-\sqrt{b})-a}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}:\dfrac{a(\sqrt{a}+\sqrt{b})-a\sqrt{a}}{(\sqrt{a}+\sqrt{b})^2}
\\=\dfrac{a-\sqrt{ab}-a}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}:\dfrac{a\sqrt{a}+a\sqrt{b}-a\sqrt{a}}{(\sqrt{a}+\sqrt{b})^2}
\\=\dfrac{-\sqrt{ab}}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}.\dfrac{(\sqrt{a}+\sqrt{b})^2}{a\sqrt{b}}
\\=\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}(\sqrt{b}-\sqrt{a})}$
c) $\dfrac{a}{b}=\dfrac14\Leftrightarrow b=4a\Rightarrow C=\dfrac{\sqrt{a}+\sqrt{4a}}{\sqrt{a}(\sqrt{4a}-\sqrt{a})}=\dfrac{\sqrt{a}+2\sqrt{a}}{\sqrt{a}(2\sqrt{a}-\sqrt{a})}=\frac{3\sqrt{a}}{\sqrt{a}.\sqrt{a}}=\dfrac{3}{\sqrt{a}}$
$C=1\Leftrightarrow \dfrac{3}{\sqrt{a}}=1\Leftrightarrow \sqrt{a}=3\Leftrightarrow a=9\Rightarrow b=36$ (TM)
Vậy...
 
Top Bottom