Ta có: $(\sqrt{\sqrt{10}-3}-\sqrt{\sqrt{10}+3})^2=2\sqrt{10}-2\sqrt{(\sqrt{10}-3)(\sqrt{10}+3)}=2(\sqrt{10}-1)$
$\Rightarrow \sqrt{\sqrt{10}-3}-\sqrt{\sqrt{10}+3}=-\sqrt{2(\sqrt{10}-1)}$ (vì $\sqrt{\sqrt{10}-3}<\sqrt{\sqrt{10}+3}$)
$\Rightarrow \dfrac{\sqrt{\sqrt{10}-3}-\sqrt{2}-\sqrt{\sqrt{10}+3}}{\sqrt{2}}+\sqrt{\sqrt{10}-1}
\\=\dfrac{\sqrt{\sqrt{10}-3}-\sqrt{\sqrt{10}+3}}{\sqrt{2}}-1+\sqrt{\sqrt{10}-1}
\\=-\sqrt{\sqrt{10}-1}-1+\sqrt{\sqrt{10}-1}=-1$