$b=\sqrt{(3+\sqrt{6+\sqrt{7+\sqrt{2}}})(3-\sqrt{6+\sqrt{7+\sqrt{2}}})}
\\=\sqrt{9-(6+\sqrt{7+\sqrt{2}})}=\sqrt{9-6-\sqrt{7+\sqrt{2}}}=\sqrt{3-\sqrt{7+\sqrt{2}}}
\\\Rightarrow ab=\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3-\sqrt{7+\sqrt{2}}}
\\=\sqrt{2+\sqrt{2}}.\sqrt{(3+\sqrt{7+\sqrt{2}})(\sqrt{3-\sqrt{7+\sqrt{2}}})}
\\=\sqrt{2+\sqrt{2}}.\sqrt{9-(7+\sqrt{2})}=\sqrt{2+\sqrt{2}}.\sqrt{9-7-\sqrt{2}}
\\=\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}=\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{4-2}=\sqrt{2}$