Căn bậc 2 (khá là khó khăn đêy)

S

son9701

TÍNH
a) [TEX]A= \sqrt{x^4+4y^2} + \sqrt{y^4+4x^2}[/TEX] với [TEX]x^2+y^2=1[/TEX]
b) Cho [TEX]\sqrt{x} + \sqrt{y} - \sqrt{z} = 0[/TEX]
[TEX]C= \frac{1}{x+y-z} + \frac{1}{y+z-x} + \frac{1}{x+z-y}[/TEX]

a) Ta có: [tex]x^2+y^2= 1 \Rightarrow x^2=1-y^2;y^2=1-x^2[/tex]

Thay vào bt A ta đc:
[TEX]A = \sqrt{x^4+4-4x^2}+\sqrt{y^4+4-4y^2}=|x^2-2|+|y^2-2|[/TEX]
Từ đây chia trường hợp ra tính A

b)Giả thiết tg đg vs: $\sqrt{x}+\sqrt{y} = \sqrt{z} $ \Rightarrow $x+y+2\sqrt{xy} =z$
Thay vào bt C ta đc:

[TEX]C = \frac{1}{x+y-x-y-2\sqrt{xy}}+\frac{1}{y+x+y+2\sqrt{xy}-x}+\frac{1}{x+x+y+2\sqrt{xy}-y}=\frac{-1}{2\sqrt{xy}}+\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}(\sqrt{x}+\sqrt{y}}=\frac{1}{2\sqrt{xy}}-\frac{1}{2\sqrt{xy}}=0[/TEX]
 
D

doggy_kruger

TÍNH
a) [TEX]A= \sqrt{x^4+4y^2} + \sqrt{y^4+4x^2}[/TEX] với [TEX]x^2+y^2=1[/TEX]
b) Cho [TEX]\sqrt{x} + \sqrt{y} - \sqrt{z} = 0[/TEX]
[TEX]C= \frac{1}{x+y-z} + \frac{1}{y+z-x} + \frac{1}{x+z-y}[/TEX]

[TEX]a)x^2+y^2=1[/TEX]

[TEX]\Rightarrow \left {\begin {4x^2=4-4y^2} \\ {4y^2=4-4x^2}}[/TEX]

[TEX]\Rightarrow A= \sqrt{x^4-4x^2+4} + \sqrt{y^4-4y^2+4} [/TEX]

[TEX]\Leftrightarrow A =\sqrt{(x^2-2)^2} + \sqrt{(y^2-2)^2}[/TEX]

[TEX]\Leftrightarrow A= 2-x^2+2-y^2 =3[/TEX]



[TEX]b) a+b-c=0[/TEX] (đặt [TEX]a=\sqrt[]{x}[/TEX] cho dễ viết)

[TEX]\Rightarrow \left {\begin {a+b=c} \\ {b-c=a} \\ {a-c=b}[/TEX]

[TEX]\Rightarrow \left {\begin {a^2+b^2+2ab=c^2} \\ {b^2+c^2-2bc=a^2} \\ {a^2+c^2-2ac=b^2}[/TEX]

[TEX]\Rightarrow \left {\begin {a^2+b^2-c^2=-2ab} \\ {b^2+c^2-a^2=2bc} \\ {a^2+c^2-b^2=2ac}[/TEX]

[TEX]\Rightarrow C= \frac{1}{x+y-z} + \frac{1}{y+z-x} + \frac{1}{x+z-y}[/TEX]

[TEX]\Leftrightarrow C= \frac{1}{a^2+b^2-c^2} + \frac{1}{b^2+c^2-a^2} + \frac{1}{a^2+c^2-b^2}[/TEX]

[TEX]\Leftrightarrow C=-\frac{1}{2ab}+\frac{1}{2bc}+\frac{1}{2ca}[/TEX]

[TEX]\Leftrightarrow C=\frac{a+b-c}{2abc} =0[/TEX]
 
L

lamhaisonbd

[TEX]a)x^2+y^2=1[/TEX]

[TEX]\Rightarrow \left {\begin {4x^2=4-4y^2} \\ {4y^2=4-4x^2}}[/TEX]

[TEX]\Rightarrow A= \sqrt{x^4-4x^2+4} + \sqrt{y^4-4y^2+4} [/TEX]

[TEX]\Leftrightarrow A =\sqrt{(x^2-2)^2} + \sqrt{(y^2-2)^2}[/TEX]

[TEX]\Leftrightarrow A= 2-x^2+2-y^2 =3[/TEX]



[TEX]b) a+b-c=0[/TEX] (đặt [TEX]a=\sqrt[]{x}[/TEX] cho dễ viết)

[TEX]\Rightarrow \left {\begin {a+b=c} \\ {b-c=a} \\ {a-c=b}[/TEX]

[TEX]\Rightarrow \left {\begin {a^2+b^2+2ab=c^2} \\ {b^2+c^2-2bc=a^2} \\ {a^2+c^2-2ac=b^2}[/TEX]

[TEX]\Rightarrow \left {\begin {a^2+b^2-c^2=-2ab} \\ {b^2+c^2-a^2=2bc} \\ {a^2+c^2-b^2=2ac}[/TEX]

[TEX]\Rightarrow C= \frac{1}{x+y-z} + \frac{1}{y+z-x} + \frac{1}{x+z-y}[/TEX]

[TEX]\Leftrightarrow C= \frac{1}{a^2+b^2-c^2} + \frac{1}{b^2+c^2-a^2} + \frac{1}{a^2+c^2-b^2}[/TEX]

[TEX]\Leftrightarrow C=-\frac{1}{2ab}+\frac{1}{2bc}+\frac{1}{2ca}[/TEX]

[TEX]\Leftrightarrow C=\frac{a+b-c}{2abc} =0[/TEX]
bạn làm sai 1 chỗ rồi. chỗ kia phải là b-c=-a chớ.
 
Top Bottom