cách tìm giao tuyến giao điểm của 2 mặt phẳng ?

B

buinhutminhltkag

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Giúp mình làm các bài tập này với tớ chỉ biết làm câu a, b nhưng các câu còn lại tớ không thể nào tìm được 2 điểm chung của 2 mặt phẳng đó, bạn nào cao tay hướng dẫn mình tìm các điểm chung này với và giải thích dùm tại sao lại có 2 điểm chung đó nha :confused::confused: gần tới kiểm tra rồi mà mình ngu quá không biết làm gì hết huhu, mình xin cám ơn trước và sau đây là bài tập.
Cho hình chóp SABCD có đáy ABCD là tứ giác có cặp cạnh đối song song. Gọi I, J, K lần lượt nằm trên SA, SB, SC ( không phải trung điểm )
a) Tìm (SAB) \bigcap_{}^{} (SCD) ( câu này tớ làm được )
b) Tìm (SAC) \bigcap_{}^{} (SBD) ( câu này tớ làm được )
c) Tìm giao điểm AB và (IJK)
d) Tìm giao điểm BC và (IJK)
e) Tìm giao điểm AD và (ÌJK)
f) Tìm giao điểm SD và (IJK)
- À quên nữa cái tìm giao điểm các bạn chỉ mình làm bước tìm mặt phẳng phụ của nó nhé, :)
 
K

konghiduocten

picture.php




c) Gắn AB vs mp (SAB)
+) Giao tuyến của (SAB) và (IJK) là IJ
+) Trên mp (SAB), do I,J ko phải là trung điểm của SA,SB nên IJ cắt AB tại E
=> E chính là giao điểm của AB và (IJK)

d) Tương tự câu c. Gắn BC với mp(SBC)
+) Giao tuyến của (SBC) và (IJK) là JK
+) Trên mp(SBC), do J,K không phải là trung điểm của SB,SC nên JK cắt BC tại F
=> F là giao điểm của BC và (IJK)
 
K

konghiduocten

e) Theo câu c,d: $E \in AB$, $E \in (IJK)$
$F \in BC$, $F \in (IJK)$
=> $EF \in (IJK)$
$EF \in (ABCD)$
=> EF là giao tuyến của 2 mp (IJK) vs (ABCD)
Trên mp (ABCD): EF cắt AD tại M
=> M là giao điểm của AD và (IJK)

f) Do M, I đều cùng thuộc mp (SAD) và mp (IJK) => MI là giao tuyến
Trên SAD: MI cắt SD tại N => N chính là giao điểm của SD và (IJK)
 
Last edited by a moderator:
Top Bottom