Ta có:
$x^3 + y^3 + z^3 - 3xyz$
$= (x + y)^3 - 3xy(x + y) + z^3 - 3xyz$
$= (x + y + z)[(x + y)^2 - (x + y)z + z^2] - 3xy(x + y + z)$
$= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz) - 3xy(x + y + z)$
$= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz - 3xy)$
$= (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)$
$= 0$
\Rightarrow $A=\frac{x^3+y^3+z^3-3xyz}{(x-y)^2+(y-z)^2+(z-x)^2}$
$= \frac{0}{(x-y)^2+(y-z)^2+(z-x)^2} = 0$
Sai rồi!!!!!!!!
Nếu $$(x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)=0$$
Mà $x+y+z=3$\Rightarrow$$(x^2 + y^2 + z^2 - xy - xz - yz)=0$$
\Rightarrow$$x=y=z=1$$.
Khi đó mẫu số cũng bằng $0$.Vô lý.
Solution
$$x^3 + y^3 + z^3 - 3xyz$$
$$= (x + y)^3 - 3xy(x + y) + z^3 - 3xyz$$
$$= (x + y + z)[(x + y)^2 - (x + y)z + z^2] - 3xy(x + y + z)$$
$$= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz) - 3xy(x + y + z)$$
$$= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz - 3xy)$$
$$= (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)$$
$$= (x+y+z)\dfrac{1}{2}[(x-y)^2+(y-z)^2+(z-x)^2]$$
Vậy $$A=\dfrac{3}{2}$$