Ừm.....bạn thử nghĩ tích phân này tính như thế nào nha....

[tex]\int\limits_{}^{}\sqrt{tan(x)}dx[/tex]
Giải đây

Đặt u=tanx=>dx=1/(u^2+1)du
[TEX]I=\int\limits_{}^{}{\frac{\sqrt{u}}{u^2+1}}du[/TEX]
Đặt [TEX]v=\sqrt{u}[/TEX]\Rightarrow[TEX]dv={\frac{1}{2\sqrt{u}}du[/TEX]
[TEX]I=2\int\limits_{}^{}{\frac{v^2}{v^4+1}}dv[/TEX]
[TEX]I=2\int\limits_{}^{}{{(-\frac{v}{2\sqrt{2}(-v^2+\sqrt{2}v-1)}-{\frac{v}{2\sqrt{2}(v^2+\sqrt{2}v+1)}})}dv[/TEX]
[TEX]I=-\frac{1}{\sqrt{2}}\int\limits_{}^{}{\frac{v}{-v^2+\sqrt{2}v-1}dv-\frac{1}{\sqrt{2}}\int\limits_{}^{}{\frac{v}{v^2+\sqrt{2}v+1}dv[/TEX]
[TEX]I=-\frac{1}{\sqrt{2}}\int\limits_{}^{}{\frac{v}{v^2+\sqrt{2}v+1}dv-\frac{1}{\sqrt{2}}\int\limits_{}^{}{(\frac{1}{\sqr{2}(-v^2+\sqrt{2}v-1)}-\frac{\sqrt{2}-v}{2\sqrt{2}(-v^2+\sqrt{2}v-1)})}dv[/TEX]
[TEX]I=-\frac{1}{2}\int\limits_{}^{}{\frac{1}{-v^2+sqrt{2}v-1}}dv+\frac{1}{2\sqrt{2}}\int\limits_{}^{}{\frac{\sqrt{2}-v}{-v^2+sqrt{2}v-1}}dv-\frac{1}{\sqrt{2}}\int\limits_{}^{}{\frac{v}{v^2+\sqrt{2}v+1}dv[/TEX]
với [TEX]\frac{1}{2\sqrt{2}}\int\limits_{}^{}{\frac{\sqrt{2}-v}{-v^2+sqrt{2}v-1}}dv[/TEX] đặt [TEX]p=-v^2+\sqrt{2}v-1 \Rightarrow dp=(\sqrt{2}-2v)dv[/TEX](1)
[TEX]I=\frac{1}{2\sqrt{2}}\int\limits_{}^{}\frac{1}{p}dp-\frac{1}{2}\int\limits_{}^{}{\frac{1}{-v^2+sqrt{2}v-1}}dv-\frac{1}{\sqrt{2}}\int\limits_{}^{}{\frac{v}{v^2+\sqrt{2}v+1}dv[/TEX]
[TEX]I=\frac{1}{2\sqrt{2}}\int\limits_{}^{}\frac{1}{p}dp-\frac{1}{2}\int\limits_{}^{}{\frac{1}{-v^2+sqrt{2}v-1}}dv-\frac{1}{\sqrt{2}}\int\limits_{}^{}{(\frac{2v+ \sqrt{2}}{2({v^2+\sqrt{2}v+1)}}-\frac{1}{\sqrt{2}(v^2+\sqrt{2}v+1)})}dv[/TEX]
[TEX]I=\frac{1}{2\sqrt{2}}\int\limits_{}^{}\frac{1}{p}dp-\frac{1}{2}\int\limits_{}^{}{\frac{1}{-v^2+sqrt{2}v-1}}dv+\frac{1}{2}\int\limits_{}^{}{(\frac{1}{v^2+\sqrt{2}v+1})}dv-\frac{1}{2\sqrt{2}}\int\limits_{}^{}{(\frac{2v+ \sq{2}}{{v^2+\sqr{2}v+1}})}dv[/TEX]
với [TEX]\int\limits_{}^{}{(\frac{2v+\sqrt{2}}{{v^2+\sqrt{2}v+1}}}dv[/TEX] đặt [TEX]w=v^2+\sqrt{2}v+1\Rightarrow dw=(2v+\sqrt{2})dv[/TEX](2)
[TEX]I=\frac{1}{2\sqrt{2}}\int\limits_{}^{}\frac{1}{p}dp-\frac{1}{2}\int\limits_{}^{}{\frac{1}{-v^2+sqrt{2}v-1}}dv+\frac{1}{2}\int\limits_{}^{}{\frac{1}{v^2+ \sqr{2}v+1}}dv-\frac{1}{2\sqrt{2}}\int\limits_{}^{}{\frac{1}{w}}dw[/TEX]
[TEX]I=\frac{1}{2\sqrt{2}}\int\limits_{}^{}\frac{1}{p}dp-\frac{1}{2}\int\limits_{}^{}{\frac{1}{-(v-\frac{1}{sqrt{2}})^2-\frac{1}{2}}}dv+\frac{1}{2}\int\limits_{}^{}{\frac{1}{(v+\frac{1}{\sqrt{2}})^2+\frac{1}{2}}dv-\frac{1}{2\sqrt{2}}\int\limits_{}^{}{\frac{1}{w}}dw[/TEX]
Đặt [TEX]a=v-\frac{1}{\sqrt{2}}\Rightarrow da=dv; b=v+\frac{1}{\sqrt{2}}\Rightarrow db=dv[/TEX](3)
[TEX]I=\frac{1}{2\sqrt{2}}\int\limits_{}^{}\frac{1}{p}dp-\frac{1}{2}\int\limits_{}^{}{\frac{1}{-(a^2+\frac{1}{2})}}da+\frac{1}{2}\int\limits_{}^{}{\frac{1}{b^2+\frac{1}{2}}db-\frac{1}{2\sqrt{2}}\int\limits_{}^{}{\frac{1}{w}}dw[/TEX]
[TEX]I=\frac{ln(p)}{2\sqrt{2}}+\frac{arctan(\sqrt{2}a)}{\sqrt{2}}+\frac{arctan(\sqrt{2}b)}{\sqrt{2}}-\frac{ln(w)}{2\sqrt{2}}[/TEX]
thay(1)(2)(3) vào ta được:
[TEX]I=\frac{ln(-v^2+\sqrt{2}v-1)}{2\sqrt{2}}-\frac{ln(v^2+\sqrt{2}v+1)}{2\sqrt{2}}-\frac{arctan(1-\sqrt{2}v)}{\sqrt{2}}+\frac{arctan(1+\sqrt{2}v)}{\sqrt{2}}[/TEX]
thay [TEX]v=\sqrt{u}[/TEX]:
[TEX]I=\frac{ln(-u+\sqrt{2}\sqrt{u}-1)}{2\sqrt{2}}-\frac{ln(u+\sqrt{2}\sqrt{u}+1)}{2\sqrt{2}}-\frac{arctan(1-\sqrt{2}\sqrt{u})}{\sqrt{2}}+\frac{arctan(1+\sqrt{2}\sqrt{u}}sqrt{2}}[/TEX]
thay tiếp u=tanx:
[TEX]I=\frac{ln(-tan(x)+\sqrt{2}\sqrt{tan(x)}-1)}{2\sqrt{2}}-\frac{ln(tan(x)+\sqrt{2}\sqrt{tan(x)}+1)}{2\sqrt{2}}-\frac{arctan(1-\sqrt{2}\sqrt{tan(x)})}{\sqrt{2}}+\frac{arctan(1+\sqrt{2}\sqrt{tan(x)})}{\sqrt{2}}[/TEX]
Tới đây coi như đã xong phù... mệt@-)
bài này làm hơi lâu
