Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Bài 1:
Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D.
1) Chứng minh tứ giác BHCD là hình bình hành.
2) Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
3) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng.
Bài 2:
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD AB, HE AC (D AB, E AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm tam giác ABQ.
d) Chứng minh SABC = 2 SDEQP.
Lần mò cả tối chưa ra
Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D.
1) Chứng minh tứ giác BHCD là hình bình hành.
2) Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
3) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng.
Bài 2:
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD AB, HE AC (D AB, E AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm tam giác ABQ.
d) Chứng minh SABC = 2 SDEQP.
Lần mò cả tối chưa ra