Áp dụng bdt phụ: $a^3+b^3 \ge ab(a+b)$
=> $\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+ \dfrac{1}{c^3+a^3+abc} \le \dfrac{1}{ab(a+b)+abc}+\dfrac{1}{bc(b+c)+abc}+ \dfrac{1}{ac(a+c)+abc}$
= $\dfrac{1}{ab(a+b+c)}+\dfrac{1}{bc(a+b+c)}+ \dfrac{1}{ac(a+b+c)}$
= $\dfrac{1}{a+b+c}(\dfrac{1}{ab}+ \dfrac{1}{bc}+ \dfrac{1}{ac} )$
= $\dfrac{1}{a+b+c}.\dfrac{c+a+b}{abc}$
= $\dfrac{1}{abc}$ (đpcm)
Dấu "=" xảy ra khi a = b = c.