Theo phương trình:
$a^2+b^2+c^2=\dfrac{a^2-b^2}{c^2+5}+\dfrac{b^2-c^2}{a^2+3}+\dfrac{c^2-a^2}{b^2+4} \le \dfrac{a^2}{c^2+5}+\dfrac{b^2}{a^2+3}+\dfrac{c^2}{b^2+4} \le \dfrac{a^2}{5}+\dfrac{b^2}{3}+\dfrac{c^2}{4} \;\; (1)$
Nhưng $a^2 \ge \dfrac{1}{5}a^2; b^2 \ge \dfrac{1}{3}b^2; c^2 \ge \dfrac{1}{4}c^2$
Vì vậy mà $\dfrac{a^2}{5}+\dfrac{b^2}{3}+\dfrac{c^2}{4} \le a^2+b^2+c^2\;\;(2)$