Toán 10 Biểu thị vtc theo hai vt a và vt b

ngocquynh8a3@gmail.com

Học sinh
Thành viên
7 Tháng mười 2018
115
23
26
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho tam giác ABC và hai điểm I,J thỏa hệ thức 2IA + 3IB - IC = 0 và 2JA + 3JB = 0

a) biểu diễn vectơ AI theo các vectơ AB, AC và vectơ CJ theo các vectơ CA, CB

b) P, Q là hai điểm thỏa hệ thức PQ = 2PA + 3PB - PC Chứng minh P, I, Q thẳng hàng

c) Gọi M là trung điểm đoạn CQ. Chứng minh P,J,M thẳng hàng
 
Last edited:

iceghost

Cựu Mod Toán
Thành viên
TV BQT xuất sắc nhất 2016
20 Tháng chín 2013
5,018
7,484
941
TP Hồ Chí Minh
Đại học Bách Khoa TPHCM
Cho tam giác ABC và hai điểm I,J thỏa hệ thức 2IA + 3IB - IC = 0 và 2JA + 3JB = 0

a) biểu diễn vectơ AI theo các vectơ AB, AC và vectơ CJ theo các vectơ CA, CB

b) P, Q là hai điểm thỏa hệ thức PQ = 2PA + 3PB - PC Chứng minh P, I, Q thẳng hàng

c) Gọi M là trung điểm đoạn CQ. Chứng minh P,J,M thẳng hàng
Đọc xong bài viết của mình, không biết bạn làm được chưa nhỉ?
a) $2\vec{IA} + 3\vec{IB} - \vec{IC} = \vec{0}$
$\implies 2\vec{IA} + 3\vec{IA} + 3\vec{AB} - \vec{IA} - \vec{AC} = \vec{0}$
$\implies ...$
$\vec{CJ}$ tương tự

b) Ở đây, bạn hãy quan sát các hệ số một chút: $2$ và $3$ và $-1$. Không biết bạn thấy quen không, chứ mình thấy rất quen:
$$\vec{PQ} = 2\vec{PI} + 2\vec{IA} + 3\vec{PI} + 3\vec{IB} - \vec{PI} - \vec{IC} = 4\vec{PI} + 2\vec{IA} + 3\vec{IB} - \vec{IC} = 4\vec{PI}$$
Do đó $\vec{PQ}$ và $\vec{PI}$ cùng phương hay $P, Q, I$ thẳng hàng

c) Bạn hãy để ý hệ thức của điểm $J$: $2\vec{JA} + 3\vec{JB} = \vec{0}$, có các hệ số $2$ và $3$. Quen không?
$$\vec{PQ} = 2\vec{PJ} + 2\vec{JA} + 3\vec{PJ} + 3\vec{JB} - \vec{PC}$$
$$\implies \vec{PQ} + \vec{PC} = 5\vec{PJ} + 2\vec{JA} + 3\vec{JB}$$
$$\implies 2\vec{PM} = 5\vec{PJ}$$
Do đó $P, M, J$ thẳng hàng

Thông thường với các bài toán nhìn hơi khó khó như có tới $2$ điểm $P$ và $Q$ chạy tùy ý thì bạn hãy để ý tới những thứ đặc biệt, khỏe hơn rất nhiều đấy! :)
 

mvthaomy

Học sinh
Thành viên
27 Tháng tư 2018
54
31
26
21
Bình Định
THCS Lương Thế Vinh
Đọc xong bài viết của mình, không biết bạn làm được chưa nhỉ?
a) $2\vec{IA} + 3\vec{IB} - \vec{IC} = \vec{0}$
$\implies 2\vec{IA} + 3\vec{IA} + 3\vec{AB} - \vec{IA} - \vec{AC} = \vec{0}$
$\implies ...$
$\vec{CJ}$ tương tự

b) Ở đây, bạn hãy quan sát các hệ số một chút: $2$ và $3$ và $-1$. Không biết bạn thấy quen không, chứ mình thấy rất quen:
$$\vec{PQ} = 2\vec{PI} + 2\vec{IA} + 3\vec{PI} + 3\vec{IB} - \vec{PI} - \vec{IC} = 4\vec{PI} + 2\vec{IA} + 3\vec{IB} - \vec{IC} = 4\vec{PI}$$
Do đó $\vec{PQ}$ và $\vec{PI}$ cùng phương hay $P, Q, I$ thẳng hàng

c) Bạn hãy để ý hệ thức của điểm $J$: $2\vec{JA} + 3\vec{JB} = \vec{0}$, có các hệ số $2$ và $3$. Quen không?
$$\vec{PQ} = 2\vec{PJ} + 2\vec{JA} + 3\vec{PJ} + 3\vec{JB} - \vec{PC}$$
$$\implies \vec{PQ} + \vec{PC} = 5\vec{PJ} + 2\vec{JA} + 3\vec{JB}$$
$$\implies 2\vec{PM} = 5\vec{PJ}$$
Do đó $P, M, J$ thẳng hàng

Thông thường với các bài toán nhìn hơi khó khó như có tới $2$ điểm $P$ và $Q$ chạy tùy ý thì bạn hãy để ý tới những thứ đặc biệt, khỏe hơn rất nhiều đấy! :)
Có cần phải vẽ hình không ạ? Nếu cần thì làm sao để xác định vị trí của I,J,P,Q ạ?
 

iceghost

Cựu Mod Toán
Thành viên
TV BQT xuất sắc nhất 2016
20 Tháng chín 2013
5,018
7,484
941
TP Hồ Chí Minh
Đại học Bách Khoa TPHCM
Có cần phải vẽ hình không ạ? Nếu cần thì làm sao để xác định vị trí của I,J,P,Q ạ?
Nếu khó vẽ quá thì bạn vẽ đại I, J không cần chính xác vị trí cũng được :D Miễn là phải logic tý, chẳng hạn $J$ nằm trên đoạn $AB$, $I$ không nằm trên các cạnh tam giác, $P$ và $Q$ thì tùy ý...
 
Top Bottom