minh thử giúp bạn nha
đề bài ;[tex]I_1= \int_{0}^{\frac{\pi}{4}}\frac{cosx-sinx}{\sqrt{2+sin2x}}dx=\int_{0}^{\frac{\pi}{4}} \frac{cosx-sinx}{\sqrt{1+2cos^2(x-\frac{\pi}{4})}}dx[/tex]
đặt [tex] t=\sqrt{1+2cos^2(x-\frac{\pi}{4}})\Rightarrow \sqrt {2}cosx(x-\frac{\pi}{4})=\sqrt{t^2-1}[/tex] có [tex]dt=\frac{-2sin(x-\frac{\pi}{4}).cos(x-\frac{\pi}{4})}{t}dx[/tex]
với [tex] x=\frac{\pi}{4}\Leftrightarrow t=\sqrt{3};x=0\Leftrightarrow t=\sqrt{2}[/tex]
lại có [tex] cosx-sinx=-\sqrt{2}.sin(x-\frac{\pi}{4})\Rightarrow (sinx+cosx)dx=\frac{tdt}{\sqrt{2}cos(x-\frac{\pi}{4})}=\frac{tdt}{\sqrt{t^2-1}}[/tex]
[tex]\Rightarrow I_1= \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{t^2-1}} dt [/tex]
[tex]I_1=ln/ t+\sqrt{t^2-1}/ \begin{vmatrix} \sqrt{3}&y \\ \sqrt{2} & v \end{vmatrix}= ln(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}+1})[/tex]