b) [tex]\frac{6}{x}\sqrt{\frac{x^{2}y}{4}} = \frac{6}{x}.\frac{x\sqrt{y}}{2} = 3\sqrt{y} (x > 0, y > 0)[/tex]
d) [tex]\frac{\sqrt{108}}{\sqrt{21} - \sqrt{3}} - \sqrt{9 + \sqrt{56}} = \frac{6\sqrt{3}}{\sqrt{3}(\sqrt{7} - 1)} - \sqrt{7 + 2\sqrt{2}.\sqrt{7} + 2} = \frac{6}{\sqrt{7} - 1} - \sqrt{(\sqrt{7} + \sqrt{2})^{2}} = \frac{6(\sqrt{7} + 1)}{(\sqrt{7} - 1)(\sqrt{7} + 1)} - (\sqrt{7} + \sqrt{2}) = \frac{6(\sqrt{7} + 1)}{7 - 1} - \sqrt{7} - \sqrt{2} = \sqrt{7} + 1 - \sqrt{7} - \sqrt{2} = 1 - \sqrt{2}[/tex]