4)
[tex]VT=\frac{1}{\sqrt{n+1}\sqrt{n}(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}[/tex] (đpcm)
[tex]S=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+.....-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}[/tex]
5)
[tex]1+\frac{1}{n^2}+\frac{1}{n+1}^2=\frac{n^2(n+1)^2+n^2+(n+1)^2}{n^2(n+1)^2}=\frac{(n+1)^2-2n(n+1)+n^2+n^2(n+1)^2+2n(n+1)}{n^2(n+1)^2}[/tex]
[tex]=\frac{(n+1-n)^2+2n(n+1)+(n+1)^2.n^2}{n^2(n+1)^2}=\frac{(n(n+1)+1)^2}{n^2.(n+1)^2}[/tex]
Tới đây khai căn là xong